Oscillation basse fréquence dans une cellule Rayleigh-Bénard cubique

Julien SALORT

Maître de stage: Andreas TILGNER

1^{er} mai — 22 juillet 2006

Georg-August Universität Göttingen

Table des matières

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Introduction

Convection Rayleigh-Bénard

Mesures par PIV

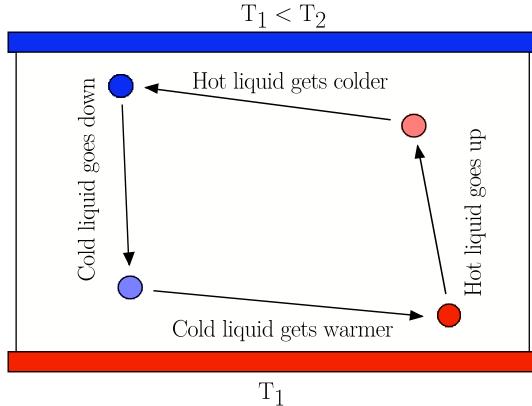
Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

Introduction

Convection Rayleigh-Bénard


Introduction Convection Rayleigh-Bénard

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

 $ightarrow Ra \gg 10^7$: régime turbulent « corrélé » de temps de cohérence finie. Existence d'une oscillation basse fréquence $(f_0 \approx 0.01 \; \text{Hz})$

Introduction

Mesures par PIV

Principe de base Montage Intervalle entre les pulses

Échantillonnage spatial et temporel Problèmes expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

Mesures par PIV

Principe de base

Introduction

Mesures par PIV

Principe de base

Montage Intervalle entre les pulses

Échantillonnage spatial et temporel Problèmes

expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Ajout de particules et enregistrement d'images à t et t + dt

Principe de base

Introduction

Mesures par PIV

Principe de base

Montage Intervalle entre les pulses

Échantillonnage spatial et temporel Problèmes expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Ajout de particules et enregistrement d'images à t et t + dt
- 2. Calcul du déplacement des particules entre t et $t + \mathrm{d}t$ par intercorrélation :

$$C(\xi, \eta) = \sum_{x,y} I(t, x, y)I(t + \Delta t, x + \xi, y + \eta)$$

Principe de base

Introduction

Mesures par PIV

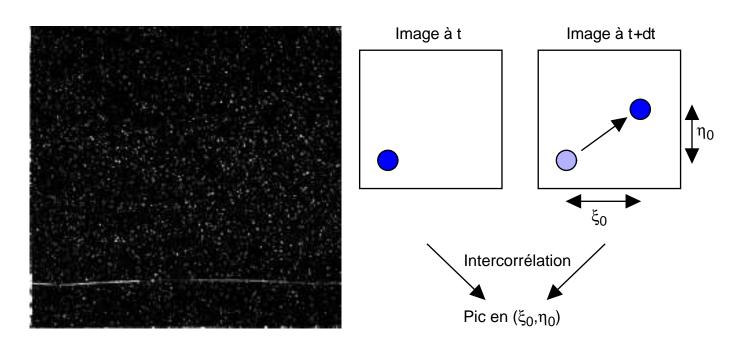
Principe de base

Montage Intervalle entre les pulses

Échantillonnage spatial et temporel Problèmes

expérimentaux

Profils de vitesse


Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Ajout de particules et enregistrement d'images à t et t + dt
- 2. Calcul du déplacement des particules entre t et $t + \mathrm{d}t$ par intercorrélation :

$$C(\xi, \eta) = \sum_{x,y} I(t, x, y)I(t + \Delta t, x + \xi, y + \eta)$$

Montage

Introduction

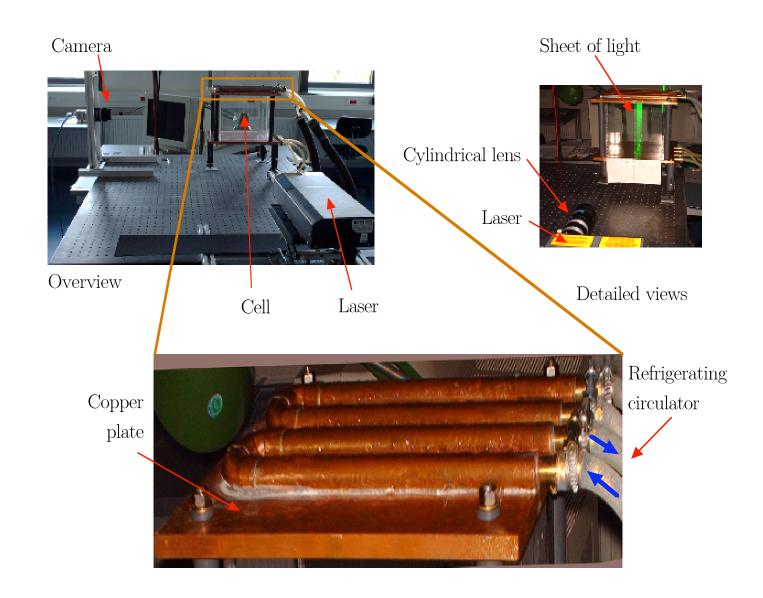
Mesures par PIV

Principe de base

Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel


Problèmes expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Intervalle entre les pulses

Introduction

Mesures par PIV

Principe de base

Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Intervalle plus grand \Rightarrow précision de la caméra meilleure

Intervalle entre les pulses

Introduction

Mesures par PIV

Principe de base Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel Problèmes

 ${\sf exp\'{e}rimentaux}$

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

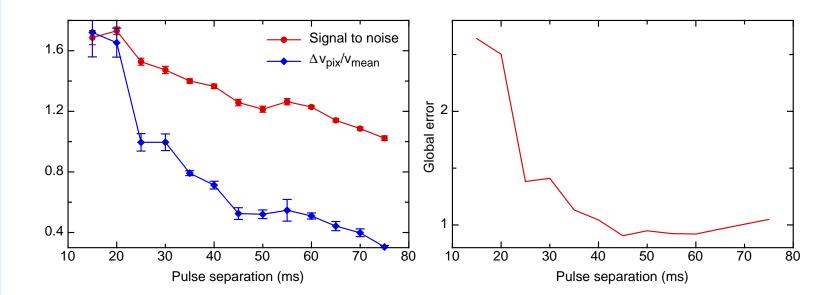
- 1. Intervalle plus grand \Rightarrow précision de la caméra meilleure
- 2. Intervalle plus grand \Rightarrow difficulté à suivre une particule

Intervalle entre les pulses

Introduction

Mesures par PIV

Principe de base Montage


Intervalle entre les pulses

Échantillonnage spatial et temporel Problèmes expérimentaux Profils de vitesse Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Intervalle plus grand \Rightarrow précision de la caméra meilleure
- 2. Intervalle plus grand \Rightarrow difficulté à suivre une particule

Introduction

Mesures par PIV

Principe de base Montage Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)

Introduction

Mesures par PIV

Principe de base Montage Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)
- 2. Étude : oscillation basse fréquence $f_0 \approx 0.01$ Hz

Introduction

Mesures par PIV

Principe de base Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)
- 2. Étude : oscillation basse fréquence $f_0 \approx 0.01 \; \text{Hz}$
- 3. Limitations : espace disque, temps de calcul

Introduction

Mesures par PIV

Principe de base

Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)
- 2. Étude : oscillation basse fréquence $f_0 \approx 0.01~{\rm Hz}$
- 3. Limitations : espace disque, temps de calcul
- 4. Résolutions accessibles : 8×8 pixels à 64×64 pixels

Introduction

Mesures par PIV

Principe de base Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)
- 2. Étude : oscillation basse fréquence $f_0 \approx 0.01~{\rm Hz}$
- 3. Limitations : espace disque, temps de calcul
- 4. Résolutions accessibles : 8×8 pixels à 64×64 pixels
- 5. Le nombre de vecteur augmente exponentiellement, le temps de calcul aussi...

Introduction

Mesures par PIV

Principe de base

Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)
- 2. Étude : oscillation basse fréquence $f_0 \approx 0.01$ Hz
- 3. Limitations : espace disque, temps de calcul
- 4. Résolutions accessibles : 8×8 pixels à 64×64 pixels
- 5. Le nombre de vecteur augmente exponentiellement, le temps de calcul aussi...
- 6. Choix final : 32×32 pixels et 1 Hz

Problèmes expérimentaux

Introduction

Mesures par PIV

Principe de base Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux

Profils de vitesse Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Grosses et petites bulles

Problèmes expérimentaux

Introduction

Mesures par PIV

Principe de base Montage Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux

Profils de vitesse Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Grosses et petites bulles
- 2. Sédimentation et agglomération des particules traçantes

Problèmes expérimentaux

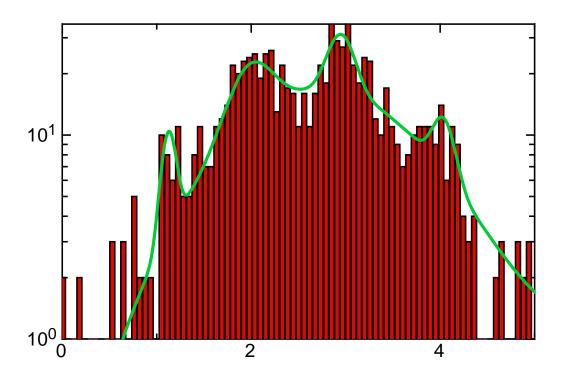
Introduction

Mesures par PIV

Principe de base Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel


Problèmes expérimentaux

Profils de vitesse Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Grosses et petites bulles
- 2. Sédimentation et agglomération des particules traçantes
- 3. Biais dans l'estimateur sous-pixel, le « Peak-locking »

Problèmes expérimentaux — Peak-locking

Introduction

Mesures par PIV

Principe de base Montage Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux

Profils de vitesse Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Rôle de l'intervalle entre les pulses : Christensen : $d_{\tau}/d_{\rm pix} < 2 \Rightarrow {\rm sous}{\rm -r\acute{e}solu} \Rightarrow {\rm Peak-locking}$: erreur significative indépendamment de l'estimateur

Problèmes expérimentaux — Peak-locking

Introduction

Mesures par PIV

Principe de base Montage Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes expérimentaux

Profils de vitesse Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Rôle de l'intervalle entre les pulses : Christensen : $d_{\tau}/d_{\rm pix} < 2 \Rightarrow {\rm sous\text{-}r\acute{e}solu} \Rightarrow {\rm Peak\text{-}locking} : {\rm erreur}$ significative indépendamment de l'estimateur
- 2. Estimateurs: Gaussiens, Whittaker

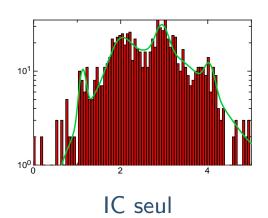
Problèmes expérimentaux — Peak-locking

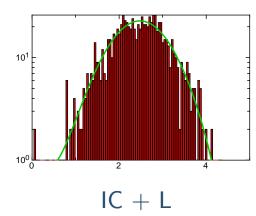
Introduction

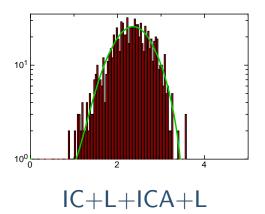
Mesures par PIV

Principe de base Montage Intervalle entre les pulses

Échantillonnage spatial et temporel


Problèmes expérimentaux


Profils de vitesse Moyennes de vitesse


Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Rôle de l'intervalle entre les pulses : Christensen : $d_{\tau}/d_{\rm pix} < 2 \Rightarrow {\rm sous}{\rm -r\acute{e}solu} \Rightarrow {\rm Peak-locking}$: erreur significative indépendamment de l'estimateur
- 2. Estimateurs: Gaussiens, Whittaker
- 3. Intercorrélation adaptative et lissage du champ de vecteur

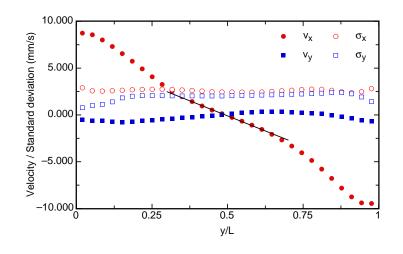
Profils de vitesse

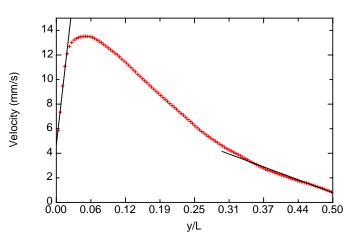
Introduction

Mesures par PIV

Principe de base Montage Intervalle entre les pulses Échantillonnage spatial et temporel Problèmes

Profils de vitesse


expérimentaux


Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. $y/L \le 0.04$: couche limite, v_x augmente linéairement
- 2. $0.04 \leq y/L \leq 0.25$: région intermédiaire, σ plus petit que v_x mais plus grand que v_y
- 3. $0.25 \le y/L \le 0.75$: région centrale, σ_x devient plus grand que v_x , fluctuations homogènes, v_x profile linéaire, v_y reste assez petit.

Moyennes de vitesse

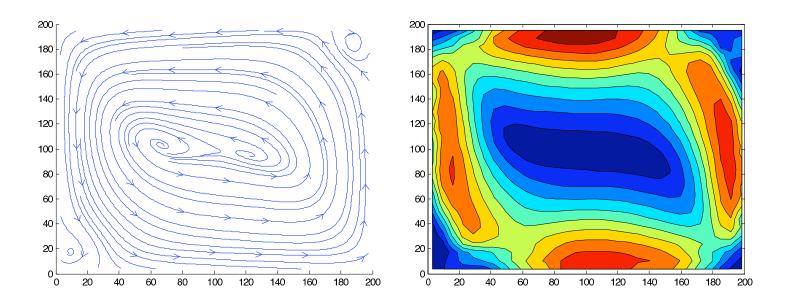
Introduction

Mesures par PIV

Principe de base Montage Intervalle entre les pulses

Échantillonnage spatial et temporel Problèmes

expérimentaux


Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

→ on observe une symétrie par rapport à la diagonale

Introduction

Mesures par PIV

Oscillation basse fréquence

Premières observations Localisation du pic Fonction de cohérence

Lignes isophases

Résultats

Décomposition de Karhunen-Loève

Conclusion

Oscillation basse fréquence

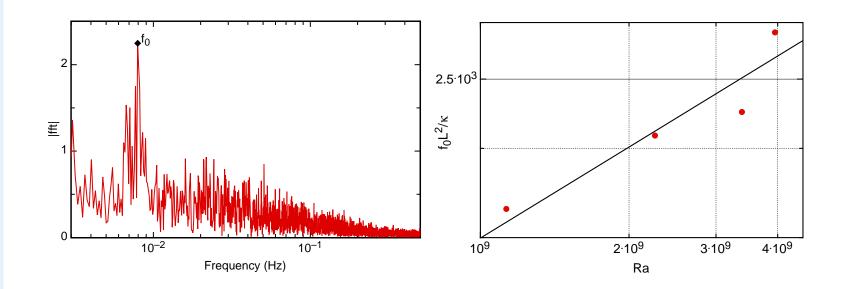
Premières observations

Introduction

Mesures par PIV

Oscillation basse fréquence

Premières observations


Localisation du pic Fonction de cohérence

Lignes isophases

Résultats

Décomposition de Karhunen-Loève

Conclusion

Relation expérimentale entre la fréquence et le nombre de Rayleigh :

$$\frac{f_0 L^2}{\kappa} = 0.23 \times \mathrm{Ra}^{0.42}$$

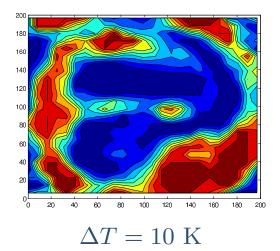
Localisation du pic

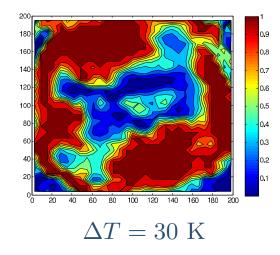
Introduction

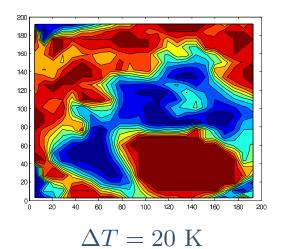
Mesures par PIV

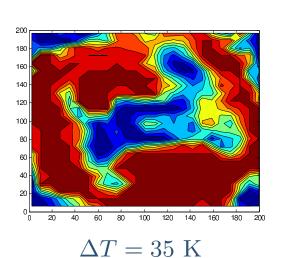
Oscillation basse fréquence

Premières observations


Localisation du pic


Fonction de cohérence


Lignes isophases


Résultats

Décomposition de Karhunen-Loève

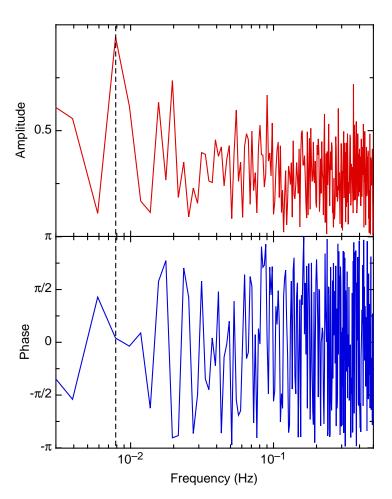
Fonction de cohérence

Introduction

Mesures par PIV

Oscillation basse fréquence

Premières observations


Localisation du pic

Fonction de cohérence

Lignes isophases Résultats

Décomposition de Karhunen-Loève

Conclusion

Fonction de cohérence entre $v_{\rm haut}$ et $v_{\rm bas}$

1. Définition de la fonction de cohérence de $f_1(t)$ et $f_2(t)$:

$$\operatorname{Coh}_{f_1 f_2}(\nu) = \frac{\hat{f}_1(\nu) \cdot \hat{f}_2(\nu)^*}{\sqrt{|\hat{f}_1(\nu)|^2 |\hat{f}_2(\nu)|^2}}$$

2. Application entre $v_{\mathsf{haut}}(t)$ et $v_{\mathsf{bas}}(t)$: pic en f_0 et phase de l'ordre de $0 \to \mathsf{problème}$?

Fonction de cohérence

Introduction

Mesures par PIV

Oscillation basse fréquence

Premières observations

Localisation du pic

Fonction de cohérence

Lignes isophases

Résultats

Décomposition de Karhunen-Loève

Conclusion

1. Villermaux et mesures expérimentales précédentes : opposition de phase entre le haut et le bas

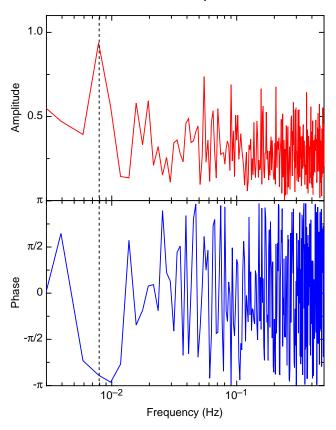
Fonction de cohérence

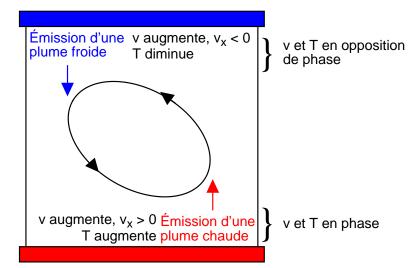
Introduction

Mesures par PIV

Oscillation basse fréquence

Premières observations


Localisation du pic


Fonction de cohérence

Lignes isophases Résultats

Décomposition de Karhunen-Loève

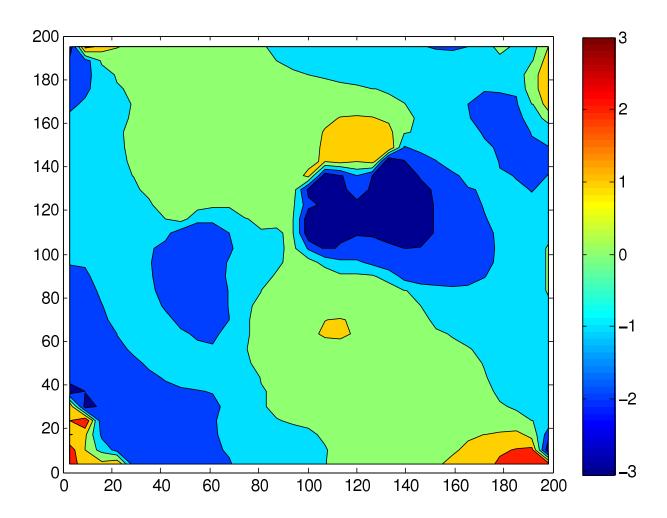
- 1. Villermaux et mesures expérimentales précédentes : opposition de phase entre le haut et le bas
- 2. Phases entre température et vitesse différentes :

Lignes isophases

Introduction

Mesures par PIV

Oscillation basse fréquence


Premières observations

Localisation du pic Fonction de cohérence

Lignes isophases

Résultats

Décomposition de Karhunen-Loève

Résultats

Introduction

Mesures par PIV

Oscillation basse fréquence

Premières observations

Localisation du pic Fonction de

Fonction de cohérence

Lignes isophases

Résultats

Décomposition de Karhunen-Loève

- 1. Localisation du pic
- 2. Oscillation en phase

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe
Poids des modes
Spectre des
coefficients
Allure des modes

Allure des modes Fonction de cohérence de q_1 et q_2

Approximation d'ordre 2 Approximation d'ordre 6 Résultats

Conclusion

Décomposition de Karhunen-Loève

Principe

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Poids des modes

Principe

Spectre des coefficients
Allure des modes
Fonction de cohérence de q_1 et q_2 Approximation d'ordre 2
Approximation d'ordre 6
Résultats

Conclusion

1. $A \in \mathcal{M}_{Nm}$ telle que $A_{ij}: i^{\mathsf{ème}}$ mesure de la $j^{\mathsf{ème}}$ sonde

Principe

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Poids des modes

Principe

Spectre des coefficients
Allure des modes
Fonction de cohérence de q_1 et q_2 Approximation d'ordre 2
Approximation

Conclusion

d'ordre 6 Résultats 1. $A \in \mathcal{M}_{Nm}$ telle que $A_{ij}: i^{\mathsf{ème}}$ mesure de la $j^{\mathsf{ème}}$ sonde

2. Décomposition : $A = U \Sigma V^T$

U matrice $N \times N$ orthogonale

V matrice $m \times m$ orthogonale

 Σ matrice $N \times m$ diagonale

Principe

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe

Poids des modes Spectre des coefficients Allure des modes

Fonction de cohérence de q_1 et q_2

Approximation

d'ordre 2 Approximation

d'ordre 6

Résultats

Conclusion

1. $A \in \mathcal{M}_{Nm}$ telle que $A_{ij}: i^{\mathsf{ème}}$ mesure de la $j^{\mathsf{ème}}$ sonde

2. Décomposition : $A = U\Sigma V^T$

U matrice $N \times N$ orthogonale

V matrice $m \times m$ orthogonale

 Σ matrice $N \times m$ diagonale

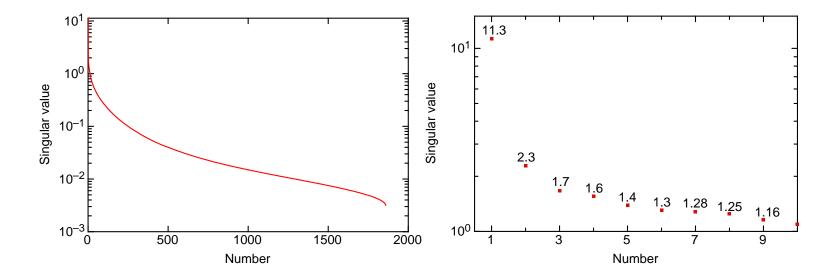
3. Si
$$Q = U\Sigma$$
, $A = QV^T$ soit $A_{ij} = \sum_{k=1}^{\infty} q_{k,i} v_{k,j}$

Poids des modes

Introduction

Mesures par PIV

Oscillation basse fréquence


Décomposition de Karhunen-Loève

Principe

Poids des modes

Spectre des coefficients
Allure des modes
Fonction de cohérence de q_1 et q_2 Approximation d'ordre 2
Approximation

d'ordre 6 Résultats

$$\sigma_1 = 11.3$$
 $\sigma_{10} = 1.1$
 $\sigma_{249} = 10^{-1}$
 $\sigma_{1291} = 10^{-2}$

Spectre des coefficients

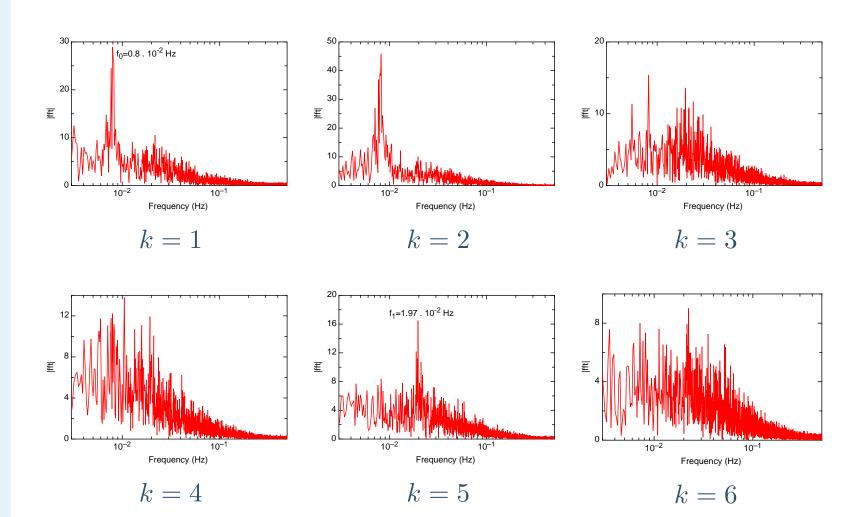
Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe


Poids des modes

Spectre des coefficients

Allure des modes Fonction de cohérence de q_1 et q_2 Approximation d'ordre 2 Approximation d'ordre 6

Conclusion

Résultats

Allure des modes

Introduction

Mesures par PIV

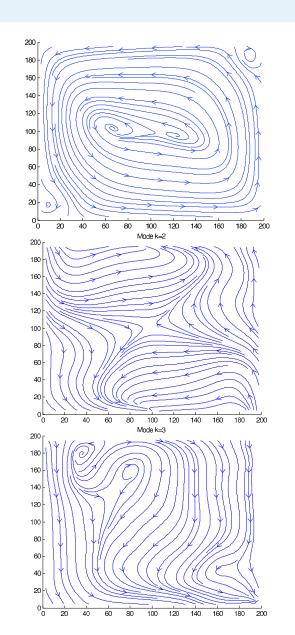
Oscillation basse fréquence

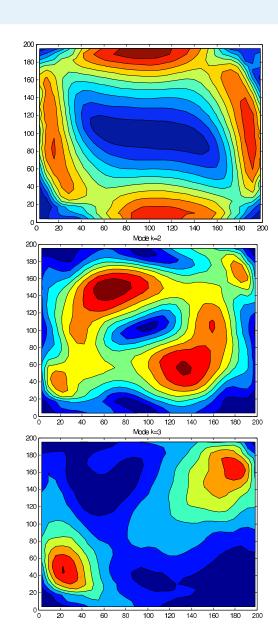
Décomposition de Karhunen-Loève

Principe
Poids des modes
Spectre des
coefficients

Allure des modes

Fonction de cohérence de q_1 et q_2 Approximation d'ordre 2 Approximation d'ordre 6


Conclusion


Résultats

$$k = 1$$

$$k = 2$$

$$k = 3$$

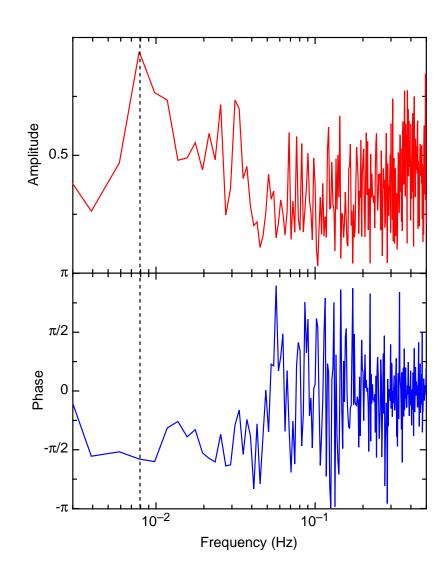
Fonction de cohérence de q_1 et q_2

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève


Principe

Poids des modes Spectre des coefficients

Allure des modes

Fonction de cohérence de q_1 et q_2

Approximation d'ordre 2 Approximation d'ordre 6 Résultats

Approximation d'ordre 2

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe

Poids des modes Spectre des coefficients

Allure des modes Fonction de cohérence de q_1 et q_2

Approximation d'ordre 2

Approximation d'ordre 6
Résultats

Approximation d'ordre 6

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe

Poids des modes Spectre des coefficients

Allure des modes Fonction de cohérence de q_1 et q_2

Approximation d'ordre 2

Approximation d'ordre 6

Résultats

Résultats

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe

Poids des modes Spectre des coefficients

Allure des modes Fonction de cohérence de q_1 et q_2 Approximation

Approximation d'ordre 2
Approximation d'ordre 6

Résultats

- 1. Modélisation de l'écoulement avec une dizaine de modes
- 2. Oscillation basse fréquence :
 - lacksquare Oscillation de k=1
 - Les k = 1 et k = 2 dominent alternativement
- 3. Problème : changement de structures

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

Conclusion

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

- 1. Bilan du stage
 - Prise en main et optimisation d'un système neuf
 - Profils et moyennes de vitesses dans une cuve carré (possibilité d'une plus grande finesse)
 - Analyse de Fourier
 - Analyse de Karhune-Loève
- 2. Perspectives
 - Données plus fines spatialement et calcul plus poussé
 - Acquisition sur des temps plus longs