PC* Planche N°2 V. Tejedor

- *Méthode 1*: Utiliser 1 et une formule classique. Ex 2., 2.bis, ...
- *Méthode 2*: Montrer que f est de classe \mathscr{C}^1 (ou le supposer dans un premier temps) puis dériver pour obtenir une équation différentielle. Ex 1-a), 4-b), 11, ...

Dans tout les cas prendre des cas particuliers pour obtenir f(0), f'(0) ...

- Méthode 3 : (rare) Utiliser le cas dégalité dans l'inégalité de Cauchy-Schwarz.

Fonctions caractérisées par une équation

Déterminer les fonctions qui vérifient les propriétés suivantes :

- 1. f est continue sur \mathbb{R} et :
 - a) $\forall (x, y) \in \mathbb{R}^2, f(x + y) = f(x) + f(y)$
 - b) $\forall (x, y) \in \mathbb{R}^2$, f(x + y) = f(x)f(y)

Principe:

Méthode 1 f(0) = 0 et f(x) = -f(-x) puis $\forall n \in \mathbb{N}$, f(nx) = nf(x) démontré par récurrence.

On passe ensuite aux rationnels $\forall (p,q) \in \mathbb{Z} \times \mathbb{N}^*, f(\frac{p}{q}x) = \frac{p}{q}f(x)$, en calculant $f(q*\frac{p}{q}x) = f(p*x)$

Enfin la continuité de f donne f(x) = xf(1) car tout réel est limite d'une suite de rationnels.

Méthode 2 $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ démontrer avec $f(x) = \int_0^1 f(x+y) - f(y) dy$. Puis dériver l'égalité et équation différentielle. Attention, avec cette méthode, la réciproque est obligatoire.

Pour le b), utiliser $g = \ln(f)$

- 2. f est continue sur \mathbb{R}_+^* et :
 - a) $\forall (x, y) \in \mathbb{R}^2_{+,*}, f(xy) = f(x) + f(y)$
 - b) $\forall (x, y) \in \mathbb{R}^2_{+,*}, f(xy) = yf(x) + xf(y)$

Principe:

- a) Utiliser $g = f \circ \exp$ et se ramener au 1. a)
- b) Utiliser $g = \frac{f(x)}{x}$, diviser par xy et utiliser le a) ou $f \in \mathscr{C}^1(\mathbb{R}_+^*, \mathbb{R})$ et dériver par rapport à x et fixer y pour obtenir une équation différentielle (solution $f : x \longmapsto a * x \ln(x)$)
- 3. Pour $\frac{5}{2}$: f est dérivable sur \mathbb{R} et : $\forall (x,y) \in \mathbb{R}^2$, f(xy) = f(x)f(y) (idem avec f continue)

Principe: Dans les deux cas, on commence par remarquer que $f(1) = f(1)^2$ et $f(-1)^2 = f(1)$ et on distingue donc trois cas

- Si f est dérivable, équation différentielle, puis recollement par parité ou imparité
- Si f continue, on étudie la fonction sur \mathbb{R}_+^* et on considère g = f ∘ exp et on se ramène au 1. b). On recolle ensuite par parité.
- 4. f est dérivable en 0 et $a \ne 1$, $a \ne 0$. $\forall x \in f(ax) = af(x)$

Principe: On définit $g: \begin{array}{c} \mathbb{R}^* \to \mathbb{R} \\ x \longmapsto \frac{f(x)}{x} \end{array}$ et g(0) = f'(0).

Si |a| > 1, $\forall x \in \mathbb{R}$ on définit U_n par $U_0 = x$ et $U_{n+1} = \frac{U_n}{a}$. Alors $\forall n \in \mathbb{N}$, $g(x) = g(U_n)$.

La continuité de g donne alors $\forall x \in \mathbb{R}, g(x) = g(0)$. Utiliser $U_{n+1} = aU_n$ si |a| < 1

- 5. f est continue sur \mathbb{R} et :
 - a) $\forall (x, y) \in \mathbb{R}^2$, f(x+y) f(x-y) = 2f(x)f(y)
 - b) $\forall (x, y) \in \mathbb{R}^2$, f(x + y) + f(x y) = 2f(x)f(y)

Principe:

- a) f(0) = 0 et f(x) f(-x) = 0. On en déduit que $f(x) = 2 * f(\frac{x}{2})^2 \ge 0$ et $-f(x) = 2 * f(\frac{x}{2})^2 \ge 0$. Donc f(x) = 0
- b) Par intégration, montrer que $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$, puis équation différentielle d'ordre 2 (dériver deux fois par rapport à x et fixer y = 0)
- 6. f est continûment dérivable sur \mathbb{R} et : $\forall (x, y) \in \mathbb{R}^2$, (x y) f'(2x y) = f(x) f(y)

Principe: x = 0 et y = 0. on obtient deux équations. on finit en faisant x = y entre ces deux équations. On obtient f'(2x) = f'(-x), on conclut par continuité de f'

7. f est continue sur \mathbb{R} et $\forall x \in \mathcal{A}_0^x f^2(t) dt = [\int_0^x f(t) dt]^2$

Principe: $x = \int_0^x 1^2 dt$, et cas d'égalité de Cauchy-Schwartz

8. f est continue sur \mathbb{R} et $\forall (x, y) \in \mathbb{R}^2 f(x + y) = f(x) + f(y) + xy$

Principe: On peut poser $g(x)=f(x)-\frac{x^2}{2}$ ou $f\in\mathcal{C}^1(\mathbb{R},\mathbb{R})$ et équation différentielle ($\frac{\partial}{\partial y}$ et y=0)

9. f est continue sur \mathbb{R} et $\forall (x, y) \in \mathbb{R}^2$, $f(x) - f(y) = \int_{x+2y}^{y+2x} f(t) dt$

Principe: $y = 0 \Rightarrow f \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$. Ensuite, $\frac{\partial}{\partial x}$ et $x = y \Rightarrow f(3x) = f'(x)$. Enfin $\frac{\partial^2}{\partial x \partial y}$ et $x = 0 \Rightarrow f'(2x) = f'(x)$. On peut conclure par continuité de f'

10. Pour $\frac{5}{2}$: f est continue sur [0,1] et $\int_0^1 f(t) dt = 1/3 + \int_0^1 [f(t^2)]^2 dt$

Principe: $1/3 = \int_0^1 t^2 dt$, on obtient après changement de variable ($t = u^2$) $\int_0^1 (f(t^2) - t)^2 dt = 0$

11. f est continue sur \mathbb{R} et $\forall x \in \mathbb{R}$, f(ax+b) = f(x) où a et b sont deux réels fixés tels ques $|a| \neq 1$

Principe: Si |a| > 1, on pose pour x quelconque $\begin{cases} U_0 = x \\ U_{n+1} = \frac{U_n - b}{a} \end{cases}$. Alors $f(U_n) = f(U_{n+1})$, d'où f = cte par continuité

Si |a| < 1, on utilise $\forall x \in \mathbb{R}$, $\begin{cases} U_0 = x \\ U_{n+1} = aU_n + b \end{cases}$

12. f est deux fois continûment dérivable sur \mathbb{R} er $\forall x \in \mathbb{R}^2$, $f(x+1)f(x-y) = f(x)^2 - f(y)^2$

Principe: $\frac{\partial^2}{\partial x \partial y}$. On obtient f''(x+y)f(x-y) - f(x+y)f''(x-y) = 0.

Si f est non nulle, $\exists a \in \mathbb{R}/f(a) \neq 0$. D'où $\forall x \in \mathbb{R}f''(x) = \frac{f''(a)}{f(a)}f(x)$