Oscillation basse fréquence dans une cellule Rayleigh-Bénard cubique

Julien SALORT Maître de stage: Andreas TILGNER

1^{er} mai — 22 juillet 2006 Georg-August Universität Göttingen

Table des matières

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

Introduction

Convection Rayleigh-Bénard

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

Convection Rayleigh-Bénard

 \rightarrow Ra $\gg 10^7$: régime turbulent « corrélé » de temps de cohérence finie. Existence d'une oscillation basse fréquence $(f_0 \approx 0.01 \text{ Hz})$

Introduction

Mesures par PIV

- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage
- spatial et temporel
- Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

Mesures par PIV

Principe de base

Introduction

Mesures par PIV

Principe de base

Montage Intervalle entre les pulses

Échantillonnage

spatial et temporel

Problèmes

expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Ajout de particules et enregistrement d'images à t et t + dt

Principe de base

Introduction

Mesures par PIV

- Principe de base
- Montage Intervalle entre les pulses
- Échantillonnage
- spatial et temporel
- Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève

Conclusion

 Ajout de particules et enregistrement d'images à t et t + dt
 Calcul du déplacement des particules entre t et t + dt par intercorrélation :

$$C(\xi,\eta) = \sum_{x,y} I(t,x,y)I(t+\Delta t,x+\xi,y+\eta)$$

Principe de base

Introduction

Mesures par PIV

- Principe de base
- Montage Intervalle entre les pulses
- Échantillonnage
- spatial et temporel
- Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève

Conclusion

 Ajout de particules et enregistrement d'images à t et t + dt
 Calcul du déplacement des particules entre t et t + dt par intercorrélation :

$$C(\xi,\eta) = \sum_{x,y} I(t,x,y)I(t+\Delta t,x+\xi,y+\eta)$$

Montage

Introduction

Mesures par PIV

Principe de base

Montage

Intervalle entre les pulses

Échantillonnage

spatial et temporel

Problèmes

expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

Intervalle entre les pulses

Introduction

Mesures par PIV Principe de base

Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes

expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Intervalle plus grand \Rightarrow précision de la caméra meilleure

Intervalle entre les pulses

|--|

- Mesures par PIV
- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage spatial et temporel
- Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

Intervalle plus grand ⇒ précision de la caméra meilleure
 Intervalle plus grand ⇒ difficulté à suivre une particule

Intervalle entre les pulses

Introduction

- Mesures par PIV
- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage spatial et temporel Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

Intervalle plus grand ⇒ précision de la caméra meilleure
 Intervalle plus grand ⇒ difficulté à suivre une particule

Introd	uction

Mesures par PIV

Principe de base

Montage

Intervalle entre les pulses

Échantillonnage spatial et temporel

Problèmes

expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)

- Mesures par PIV
- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage spatial et temporel
- Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

- 1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)
- 2. Étude : oscillation basse fréquence $f_0 \approx 0.01$ Hz

Introduction

Mesures par PIV

Principe de base

Montage

- Intervalle entre les pulses
- Échantillonnage spatial et temporel
- Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

- 1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)
- 2. Étude : oscillation basse fréquence $f_0 \approx 0.01$ Hz
- 3. Limitations : espace disque, temps de calcul

- Mesures par PIV
- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage spatial et temporel
- Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

- 1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)
- 2. Étude : oscillation basse fréquence $f_0 \approx 0.01$ Hz
- 3. Limitations : espace disque, temps de calcul
- 4. Résolutions accessibles : 8×8 pixels à 64×64 pixels

- Mesures par PIV
- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage spatial et temporel
- Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

- 1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)
- 2. Étude : oscillation basse fréquence $f_0 \approx 0.01$ Hz
- 3. Limitations : espace disque, temps de calcul
- 4. Résolutions accessibles : 8×8 pixels à 64×64 pixels
- 5. Le nombre de vecteur augmente exponentiellement, le temps de calcul aussi...

- Mesures par PIV
- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage spatial et temporel
- Problèmes expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

- 1. Fréquences accessibles : 1 à 4 Hz (jusqu'à 15 Hz pour le laser)
- 2. Étude : oscillation basse fréquence $f_0 \approx 0.01$ Hz
- 3. Limitations : espace disque, temps de calcul
- 4. Résolutions accessibles : 8×8 pixels à 64×64 pixels
- 5. Le nombre de vecteur augmente exponentiellement, le temps de calcul aussi...
- 6. Choix final : 32×32 pixels et 1 Hz

Problèmes expérimentaux

Introduction

Mesures par PIV

Principe de base

Montage

Intervalle entre les pulses

puises

Échantillonnage spatial et temporel

Problèmes

expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Grosses et petites bulles

Problèmes expérimentaux

- Mesures par PIV
- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage spatial et temporel
- Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

- 1. Grosses et petites bulles
- 2. Sédimentation et agglomération des particules traçantes

Problèmes expérimentaux

- Mesures par PIV
- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage
- spatial et temporel
- Problèmes expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

- 1. Grosses et petites bulles
- 2. Sédimentation et agglomération des particules traçantes
- 3. Biais dans l'estimateur sous-pixel, le « Peak-locking »

Problèmes expérimentaux — Peak-locking

Introduction

Mesures par PIV

Principe de base

Montage

Intervalle entre les

pulses

Échantillonnage spatial et temporel

Problèmes

expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Rôle de l'intervalle entre les pulses : Christensen : $d_{\tau}/d_{\text{pix}} < 2 \Rightarrow$ sous-résolu \Rightarrow Peak-locking : erreur significative indépendamment de l'estimateur

Problèmes expérimentaux — Peak-locking

Introduction

Mesures par PIV

Principe de base

Montage

Intervalle entre les pulses

Échantillonnage

spatial et temporel

Problèmes

expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

1. Rôle de l'intervalle entre les pulses : Christensen : $d_{\tau}/d_{\text{pix}} < 2 \Rightarrow$ sous-résolu \Rightarrow Peak-locking : erreur significative indépendamment de l'estimateur

2. Estimateurs : Gaussiens, Whittaker

Problèmes expérimentaux — Peak-locking

Introduction

Mesures par PIV

Principe de base

Montage

Intervalle entre les pulses

Échantillonnage

spatial et temporel

Problèmes

expérimentaux

Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

- 2. Estimateurs : Gaussiens, Whittaker
- 3. Intercorrélation adaptative et lissage du champ de vecteur

IC+L+ICA+L

Profils de vitesse

- Mesures par PIV
- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage spatial et temporel Problèmes
- expérimentaux
- Profils de vitesse
- Moyennes de vitesse
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

- 1. $y/L \leq 0.04$: couche limite, v_x augmente linéairement
- 2. $0.04 \le y/L \le 0.25$: région intermédiaire, σ plus petit que v_x mais plus grand que v_y
- 3. $0.25 \le y/L \le 0.75$: région centrale, σ_x devient plus grand que v_x , fluctuations homogènes, v_x profile linéaire, v_y reste assez petit.

Moyennes de vitesse

Introduction

- Mesures par PIV
- Principe de base
- Montage
- Intervalle entre les pulses
- Échantillonnage
- spatial et temporel
- Problèmes
- expérimentaux
- Profils de vitesse

Moyennes de vitesse

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

\rightarrow on observe une symétrie par rapport à la diagonale

Introduction

Mesures par PIV

Oscillation basse fréquence

Premières

observations

Localisation du pic

Fonction de

cohérence

Lignes isophases

Résultats

Décomposition de Karhunen-Loève

Conclusion

Oscillation basse fréquence

Premières observations

Introduction

Oscillation basse fréquence

Premières

observations

Localisation du pic Fonction de cohérence

Lignes isophases

Résultats

Décomposition de Karhunen-Loève

Conclusion

Relation expérimentale entre la fréquence et le nombre de Rayleigh :

$$\frac{f_0 L^2}{\kappa} = 0.23 \times \mathrm{Ra}^{0.42}$$

Localisation du pic

Introduction

- Mesures par PIV
- Oscillation basse fréquence
- Premières
- observations

Localisation du pic

- Fonction de cohérence
- Lignes isophases
- Résultats
- Décomposition de Karhunen-Loève
- Conclusion

 $\Delta T = 10~{\rm K}$

 $\Delta T = 20 \text{ K}$

 $\Delta T = 30~{\rm K}$

 $\Delta T = 35~{\rm K}$

Fonction de cohérence

1. Définition de la fonction de cohérence de $f_1(t)$ et $f_2(t)$:

$$\operatorname{Coh}_{f_1 f_2}(\nu) = \frac{\hat{f}_1(\nu) \cdot \hat{f}_2(\nu)^*}{\sqrt{|\hat{f}_1(\nu)|^2 |\hat{f}_2(\nu)|^2}}$$

- 2. Application entre $v_{haut}(t)$ et $v_{bas}(t)$: pic en f_0 et phase de l'ordre de 0 \rightarrow problème?
- Fonction de cohérence entre v_{haut}

et v_{bas}

Fonction de cohérence

Introduction
Mesures par PIV
Oscillation basse fréquence
Premières observations
Localisation du pic
Fonction de cohérence
Lignes isophases Résultats
Décomposition de Karhunen-Loève
Conclusion

1. Villermaux et mesures expérimentales précédentes : opposition de phase entre le haut et le bas

Fonction de cohérence

- Mesures par PIV
- Oscillation basse
- fréquence
- Premières
- observations
- Localisation du pic
- Fonction de cohérence
- Lignes isophases
- Résultats
- Décomposition de Karhunen-Loève
- Conclusion

- 1. Villermaux et mesures expérimentales précédentes : opposition de phase entre le haut et le bas
- 2. Phases entre température et vitesse différentes :

Lignes isophases

Résultats

Introduction

Mesures par PIV

Oscillation basse

fréquence

Premières

observations

Localisation du pic

Fonction de cohérence

Lignes isophases

Résultats

Décomposition de Karhunen-Loève

Conclusion

Localisation du pic Oscillation en phase

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe

Poids des modes

Spectre des

coefficients

Allure des modes

Fonction de

cohérence de q_1 et

 q_2

Approximation d'ordre 2

Approximation

d'ordre 6

Résultats

Conclusion

Décomposition de Karhunen-Loève

Principe

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe

Poids des modes Spectre des coefficients Allure des modes

Fonction de

cohérence de q_1 et

 q_2

Approximation

d'ordre 2

Approximation

d'ordre 6

Résultats

Conclusion

1. $A \in \mathcal{M}_{Nm}$ telle que A_{ij} : $i^{\mathsf{ème}}$ mesure de la $j^{\mathsf{ème}}$ sonde

Principe

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe

Poids des modes Spectre des coefficients Allure des modes Fonction de cohérence de q_1 et q_2 Approximation d'ordre 2 Approximation

d'ordre 6

Résultats

Conclusion

1. $A \in \mathcal{M}_{Nm}$ telle que A_{ij} : $i^{\text{ème}}$ mesure de la $j^{\text{ème}}$ sonde 2. Décomposition : $A = U\Sigma V^T$

U matrice $N\times N$ orthogonale

V matrice $m \times m$ orthogonale

 Σ matrice $N\times m$ diagonale

Principe

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe

Poids des modes Spectre des coefficients

Allure des modes Fonction de cohérence de q_1 et q_2

Approximation d'ordre 2

Approximation

d'ordre 6

Résultats

Conclusion

1. $A \in \mathcal{M}_{Nm}$ telle que $A_{ij} : i^{\text{ème}}$ mesure de la $j^{\text{ème}}$ sonde 2. Décomposition : $A = U\Sigma V^T$ U matrice $N \times N$ orthogonale V matrice $m \times m$ orthogonale Σ matrice $N \times m$ diagonale 3. Si $Q = U\Sigma$, $A = QV^T$ soit $A_{ij} = \sum_{k=1}^{m} q_{k,i} v_{k,j}$

Poids des modes

- Introduction
- Mesures par PIV
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Principe
- Poids des modes
- Spectre des coefficients
- Allure des modes
- Fonction de
- cohérence de q_1 et
- q_2
- Approximation
- d'ordre 2
- Approximation
- d'ordre 6
- Résultats
- Conclusion

$$\sigma_{10} = 11.3$$

$$\sigma_{10} = 1.1$$

$$\sigma_{249} = 10^{-1}$$

$$\sigma_{1291} = 10^{-2}$$

Spectre des coefficients

Décomposition de Karhunen-Loève

Principe

Poids des modes Spectre des coefficients

Allure des modes Fonction de cohérence de q_1 et q_2 Approximation d'ordre 2 Approximation d'ordre 6 Résultats

Conclusion

Allure des modes

Fonction de cohérence de q_1 et q_2

Approximation d'ordre 2

i				11					
I	n	It.	ro	d	u	C	tι	0	n
-						-		-	

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Principe

Poids des modes

Spectre des coefficients

coefficients

Allure des modes

 ${\sf Fonction} \ {\sf de}$

cohérence de q_1 et

 q_2

Approximation

d'ordre 2

Approximation

d'ordre 6

Résultats

Conclusion

Approximation d'ordre 6

Introduction
Mesures par PIV
Oscillation basse fréquence
Décomposition de Karhunen-Loève
Principe
Poids des modes Spectre des coefficients
Allure des modes Fonction de cohérence de q ₁ et
q_2
Approximation d'ordre 2
Approximation d'ordre 6
Résultats
Conclusion

Résultats

I	nt	rod	ucti	on
-		.00	ucu	011

- Mesures par PIV
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Principe
- Poids des modes Spectre des
- coefficients
- Allure des modes
- Fonction de
- cohérence de q_1 et
- q_2
- Approximation d'ordre 2
- Approximation
- d'ordre 6
- Résultats
- Conclusion

- Modélisation de l'écoulement avec une dizaine de modes
 Oscillation basse fréquence :
 - Oscillation de k = 1
 - Les k = 1 et k = 2 dominent alternativement
- 3. Problème : changement de structures

Introduction

Mesures par PIV

Oscillation basse fréquence

Décomposition de Karhunen-Loève

Conclusion

Conclusion

Conclusion

|--|

- Mesures par PIV
- Oscillation basse fréquence
- Décomposition de Karhunen-Loève
- Conclusion

- 1. Bilan du stage
 - Prise en main et optimisation d'un système neuf
 - Profils et moyennes de vitesses dans une cuve carré (possibilité d'une plus grande finesse)
 - Analyse de Fourier
 - Analyse de Karhune-Loève
- 2. Perspectives
 - Données plus fines spatialement et calcul plus poussé
 - Acquisition sur des temps plus longs