Turbulence quantique versus classique

Julien Salort

Thèse réalisée à l'Institut Néel, CNRS, Grenoble Équipe hydro : Philippe-E. Roche, Benoît Chabaud, Bernard Hébral, Christoph Weise, Mathieu Gibert, Hichem Benalia

> Direction de thèse : Philippe-E. Roche

Collaborations :

Alessandro Monfardini, Emmanuel Lévêque, Collaboration TSF

- 1. Introduction
- 2. Capteur à micro-poutrelle
- 3. Fluctuations de vitesse & cascade d'énergie
- 4. Comportement à petite échelle & vorticité
- 5. Conclusion

Turbulence...

c'est-à-dire, la dynamique d'un fluide "fortement" brassé...

Leonard de Vinci, xvi^e siècle

H.M. Nagib, Fluid Dynamics Research Center

...superfluide

Fluide exotique :

- réputé sans viscosité ;
- circulation de la vitesse quantifiée.

1. Introduction

Turbulence classique Hydrodynamique de l'hélium

- 2. Capteur à micro-poutrelle
- 3. Fluctuations de vitesse & cascade d'énergie
- 4. Comportement à petite échelle & vorticité
- 5. Conclusion

Turbulence classique : la cascade inertielle

Énergie injectée à grande échelle

Grande échelle L ε Échelle visqueuse η

Énergie dissipée à petite échelle

Paramètre de contrôle

Nombre de Reynolds

Défini à partir de la grande échelle L

$$Re = \frac{Lv_{\rm rms}}{v}$$

• Défini à partir de la micro-échelle de Taylor λ :

$$R_{\lambda} = \frac{\lambda v_{\rm rms}}{v}$$

avec

$$\langle \|\nabla v\|^2 \rangle = \left(\frac{v_{\rm rms}}{\lambda}\right)^2$$

Turbulence

 $Re \gg 1$

Informations sur les tourbillons : hypothèse de Taylor

- À une fréquence f correspond à un tourbillon de taille v/f
- Nombre d'onde : $k = \frac{2\pi f}{v}$

Conséquence sur le spectre de vitesse

Statistiques des incréments de vitesse longitudinaux

$$\delta v(r;x) = v(x+r) - v(x)$$

10

Théorie de Kolmogorov (1941) : spectre en -5/3

Théorie de Kolmogorov (1941) : cascade d'énergie

Flux d'énergie à travers les échelles

Un calcul exact à partir de l'équation de Navier-Stokes permet d'obtenir

$$\langle \delta v^3 \rangle = -\frac{4}{5}\epsilon r + 6\nu \frac{\partial \langle \delta v^2 \rangle}{\partial r}$$

Cette relation est souvent présentée comme la seule relation exacte de la turbulence. Elle implique une distribution dissymétrique pour δv .

Interprétation comme bilan d'énergie :

L'hélium cryogénique comme fluide d'étude

L'hélium liquide comme fluide visqueux classique

Fluide	<i>T</i> [K]	P[bar]	$v = \eta / \rho [m^2/s]$
Air	293	1	$1,5 \times 10^{-5}$
Eau	293	1	$1,0 \times 10^{-6}$
SF_6	300	15	$1,5 \times 10^{-7}$
$He_{(g)}$	4,2	1	$7,4 \times 10^{-8}$
He _(I)	4,2	1	$2,6 \times 10^{-8}$

► Transition de phase à $T_{\lambda} \approx 2,17 \text{ K}$

*Lv*_{rms}

Re =

He II : fluide à deux composantes

- Composante normale (n) : visqueuse
- Composante superfluide (s) :
 - → inviscide
 - → circulation quantifiée de la vitesse (κ)
 - irrotationnel sauf le long de lignes de vortex

Système étudié : ⁴He superfluide à grand Re

Exemple d'échelles ($R_{\lambda} \approx 1000$)

- Comment l'énergie est-elle dissipée ?
- Existe-t-il une hiérarchie d'échelles ?
- Existe-t-il une cascade au sens de Kolmogorov ?
- Jusqu'où l'écoulement est-il analogue à un écoulement turbulent classique ?

Fluctuations de vitesse : cascade superfluide ?

Fil conducteur de ce travail de thèse :

Problématique :

Quels sont les points communs et les différences entre la turbulence classique et la turbulence dans l'hélium (⁴He) superfluide ?

Défi expérimental :

- Mise au point d'une instrumentation spécifique :
 - Contraintes spécifiques aux basses températures
 - Mesure locale de fluctuations de vitesse : objectif diminuer la taille du capteur de 1mm à 100 μm
- Réalisation de souffleries cryogéniques :
 - → Grand nombre de Reynolds $R_{\lambda} \approx 300$ pour l'écoulement de grille $R_{\lambda} \approx 1000$ dans une conduite
 - ➡ 1,2 K < T < 2,17 K</p>
 - Bonne qualité hydrodynamique

Travaux menés pendant la thèse

Développements instrumentaux :

- Tubes de Pitot miniatures ;
- Capteur à micro-poutrelle ;
- Pinces à second son.

Souffleries :

- Système de test ;
- Conduite de contre-courant ;
- Écoulement TSF ;
- Soufflerie Toupie.

Résultats physiques :

- Spectre de vitesse aux échelles inertielles ;
- Cascade d'énergie à travers les échelles ;
- Comportement spectral à petite échelle (simulations numériques);
- Dépendance en température du spectre de vorticité.

Travaux menés pendant la thèse

Développements instrumentaux :

- Tubes de Pitot miniatures ;
- Capteur à micro-poutrelle ;
- Pinces à second son.

Souffleries :

- Système de test ;
- Conduite de contre-courant ;
- Écoulement TSF ;
- Soufflerie Toupie.

Résultats physiques :

- Spectre de vitesse aux échelles inertielles ;
- Cascade d'énergie à travers les échelles ;
- Comportement spectral à petite échelle (simulations numériques);
- Dépendance en température du spectre de vorticité.

1. Introduction

- 2. Capteur à micro-poutrelle Principe et fabrication Premier prototype
- 3. Fluctuations de vitesse & cascade d'énergie
- 4. Comportement à petite échelle & vorticité
- 5. Conclusion

Anémométrie par déflection d'une micro-poutrelle

- La micro-poutrelle est défléchie par l'écoulement incident ;
- ► Technique validée en turbulence classique (Barth et al., 2005);
- La pointe de la poutrelle doit être au cœur de l'écoulement ;
- Les bras doivent être aussi transparents que possible.

Micro-poutrelle sur son wafer de silicium avant clivage

Étalonnage préliminaire du capteur à micro-poutrelle

Soufflerie de test

Micro-poutrelle : premières mesures en He II

Le premier prototype fonctionnel atteint la résolution spatiale des meilleurs micro-Pitots !

Avantages du capteur à micro-poutrelle

- Moins sensible aux bruits acoustiques
- Plus facile à miniaturiser (entièrement micro-fabriqué)

Perspectives

- Améliorer la sensibilité
- Améliorer la résolution (au moins jusqu'à 50 μm)
- Peigne de micro-poutrelles multiplexées

1. Introduction

- 2. Capteur à micro-poutrelle
- 3. Fluctuations de vitesse & cascade d'énergie Motivations Collaboration TSF Résultats dans la soufflerie Toupie
- 4. Comportement à petite échelle & vorticité
- 5. Conclusion

Fluctuations de vitesse

Mesure de référence (Maurer & Tabeling, 1998)

- Spectre en -5/3 dans une géométrie Von Kármán ;
- Identique au dessus et en dessous de T_{λ} ;

Motivations pour une nouvelle expérience

- Confirmer le résultat et l'étendre à d'autres géométries ;
- Conduite pressurisée pour garantir l'absence de bulle en He I ;
- Mettre en œuvre un écoulement canonique, homogène et isotrope ;
- Taux de turbulence faible pour s'affranchir des biais sur la capteur ;
- ► Mise en évidence directe de la cascade d'énergie : loi des 4/5.

Fluctuations de vitesse

Mesure de référence (Maurer & Tabeling, 1998)

- Spectre en -5/3 dans une géométrie Von Kármán ;
- Identique au dessus et en dessous de T_{λ} ;

Motivations pour une nouvelle expérience

- Confirmer le résultat et l'étendre à d'autres géométries ;
- Conduite pressurisée pour garantir l'absence de bulle en He I ;
- Mettre en œuvre un écoulement canonique, homogène et isotrope ;
- Taux de turbulence faible pour s'affranchir des biais sur la capteur ;
- Mise en évidence directe de la cascade d'énergie : loi des 4/5.

Fluctuations de vitesse : collaboration TSF

Collaboration TSF (ANR et Région Rhône-Alpes) :

- SBT/INAC, CEA Grenoble/UJF
- Institut Néel, CNRS/UJF/Grenoble-INP
- LEGI, Grenoble-INP/UJF/CNRS
- SPEC/IRAMIS, CEA Saclay/CNRS
- Laboratoire de Physique, ENSL/CNRS

Écoulement de grille TSF

Écoulement de grille TSF : constante de Kolmogorov

$$E(k) = \frac{C_k}{\epsilon^{2/3}} k^{-5/3}$$

Estimation de ϵ

- Mesure de $v_{\rm rms}$ à deux positions ($\Delta x \approx 17M \approx 6 \,{\rm cm}$)
- Conservation de l'énergie :

 $\epsilon_{\text{production}} = \epsilon_{\text{inertiel}} = \epsilon_{\text{dissipation}}$

• Calcul de ϵ :

$$\epsilon \approx \left| \frac{\partial v_{\rm rms}^2}{\partial t} \right| \approx \langle v \rangle^3 \left| \frac{\partial \tau^2}{\partial x} \right| \approx \langle v \rangle^3 \frac{(\tau_2^2 - \tau_1^2)}{(x_2 - x_1)}$$

Écoulement de grille TSF : constante de Kolmogorov

$$E(k) = \frac{C_k}{c^{2/3}} k^{-5/3}$$

Calcul de C_k

- Littérature turbulence classique : $C_k = 1,0-1,74$
- Expérience TSF : $C_k = 0.9 1.2$

Écoulement de grille TSF

- ✓ Confirmation d'un spectre en -5/3 en He I et He II ;
- Turbulence homogène et isotrope en accord quantitatif avec la littérature (taux de turbulence, échelle intégrale, constante de Kolmogorov);
- Signal sur bruit faible : moments d'ordre > 2 mal résolus.

Nouvelle soufflerie : Toupie

Étude et réalisation : G. Garde

Cahier des charges

- Souplesse (froid en 2 jours);
- Rigidité ;
- Pressurisation statique ;
- Optimisation pour les basses températures (1,2K à terme);
- Réchauffement des gaz bas bruit ;
- Échelle intégrale ajustable.

Exemple d'optimisation

Dimensionnement : ENSE3

Performances au premier refroidissement (pompe primaire)

- $\langle v \rangle \approx 1 \,\mathrm{m/s} \,\mathrm{\dot{a}} \,1,55 \,\mathrm{K}$
- ► Débit massique : 130 g/s (≈ 100 L/min en circuit fermé) TSF: 700 g/s

Toupie : premiers résultats (2011)

Cascade turbulente : dissymétrie des incréments de vitesse longitudinaux

Cascade turbulente : loi des 4/5 : $\langle \delta v^3 \rangle = -\frac{4}{5}\epsilon r$

Estimation de ϵ

- Loi des 4/5 valable en He I (fluide classique) ;
- Spectres indiscernables He I et He II ;
- Constante de Kolmogorov identique He I et He II (TSF) ;
- Acquisitions en He I et He II.

Cascade turbulente : loi des 4/5 : $\langle \delta v^3 \rangle = -\frac{4}{5}\epsilon r$

Salort, et al, soumis à EPL

Écoulement de sillage lointain Toupie

- ✓ Spectre en -5/3 en He I et He II ;
- Dissymétrie des incréments de vitesse longitudinaux en accord quantitatif avec la littérature de la turbulence classique ;
- ✓ Loi des 4/5 : mesure du taux d'énergie dans la cascade.

Similarités turbulence quantique versus classique

- Spectres expérimentaux en -5/3 ;
- Grandeurs intégrales : taux de dissipation, taux de turbulence, grande échelle ;
- Loi des 4/5 et moments d'ordre supérieurs

Différences turbulence quantique versus classique ?

- Équipartition de l'énergie dans une gamme d'échelles intermédiaires
- Spectre de fluctuation de vorticité en -5/3 à 1,55 K

Similarités turbulence quantique versus classique

- ► Spectres expérimentaux en -5/3 ;
- Grandeurs intégrales : taux de dissipation, taux de turbulence, grande échelle ;
- Loi des 4/5 et moments d'ordre supérieurs

Différences turbulence quantique versus classique ?

- Équipartition de l'énergie dans une gamme d'échelles intermédiaires
- Spectre de fluctuation de vorticité en -5/3 à 1,55 K

- 1. Introduction
- 2. Capteur à micro-poutrelle
- 3. Fluctuations de vitesse & cascade d'énergie
- 4. Comportement à petite échelle & vorticité
- 5. Conclusion

Simulations numériques

Modèle continu à deux fluides :

$$\frac{D\vec{v}_n}{Dt} = -\frac{1}{\rho_n}\nabla p_n + \frac{\rho_s}{\rho}\vec{F}_{ns} + \vec{f}_n^{ext} + \frac{\mu}{\rho_n}\nabla^2\vec{v}_n$$
$$\frac{D\vec{v}_s}{Dt} = -\frac{1}{\rho_s}\nabla p_s - \frac{\rho_n}{\rho}\vec{F}_{ns} + \vec{f}_s^{ext}$$

Échelles résolues :

Forçage : L – Coupure : distance inter-vortex δ

1^{ère} différence : comportement spectral (simulations)

1^{ère} différence : comportement spectral (simulations)

2^e différence : spectre d'enstrophie ($|\vec{\omega}_s|$)

Mesure de référence (CRTBT/ESPCI/ESIEE, 2007)

- Pince à second son Développements initiaux : H. Willaime & P. Tabeling poursuivis à Grenoble
- Spectre en -5/3 à 1,55 K
- L'interprétation suggère que le spectre pourrait évoluer avec la température.

Nouvelles mesures

- Reproduire et étendre à d'autres températures ;
- Nouvelle pince équipée d'un dépôt thermométrique or-étain permettant une mesure entre 1,3K et 2,2K (collaboration IEF Orsay).

Vorticité superfluide* : dépendance en température

* densité de lignes de vortex quantiques

Vorticité superfluide* : dépendance en température

* densité de lignes de vortex quantiques

Même cadre d'interprétation

- Verrouillage normal/superfluide aux échelles inertielles Champ polarisé : w
 {||} → L{||} = |w
 _{||}|/κ
- ► Excitations à petite échelle (k^2) Champ aléatoire : $\vec{\omega}_{\times} \rightarrow L_{\times} = |\vec{\omega}_{\times}|/\kappa$

- 1. Introduction
- 2. Capteur à micro-poutrelle
- 3. Fluctuations de vitesse & cascade d'énergie
- 4. Comportement à petite échelle & vorticité
- 5. Conclusion

Conclusion: turbulence quantique versus classique

Analogies fortes aux échelles inertielles

- Spectres en $k^{-5/3}$;
- Constantes de Kolmogorov, taux de turbulence, taux de dissipation d'énergie, cascade ;
- Verrouillage des composantes normales et superfluides
- (viscosité effective)
- (dissymétrie des incréments longitudinaux dans les simulations)
- (moments d'ordre supérieurs, intermittence)

Nouvelle physique à petite échelle

- Remontée spectrale en k^2 (équipartition)
- Dépendance en température du spectre de vorticité.

Quelques perspectives

Défi expérimental : mesurer le régime en k^2

- Augmenter les échelles : collaboration SHREK
- Diminuer la température : futur de TOUPIE
- Diminuer la taille de capteur : perspectives micro-poutrelle

Micro-résonateur supraconducteur : un outil pour l'hydrodynamique

- Réseau de poutrelles (corrélations spatiales)
- Cartographie de densité (convection de Rayleigh-Bénard)
- Capteur de bulles (hélium diphasique)

Remerciements

Mécanique et chaudronnerie :

Grégory Garde, Pierre Chanthib, Pierre Brosse-Maron, Guillaume Donnier-Valentin, Anne Gérardin, Yannick Launay, Henri Rodenas, Philippe Jeantet, Vincent Roger

Électronique :

Olivier Exshaw, Christophe Guttin, Christophe Hoarau Salles blanches :

Thierry Crozes, Sébastien Dufresnes, Bruno Fernandez, Thierry Fournier, Gwenaelle Julie, Emmanuel André, Stéphane Litaudon, Frédéric Gustavo, Helge Haas, Thibault Haccart, Christophe Lemonias, Jean-Luc Thomassin

Chercheurs, thésards, collaborateurs :

Philippe Roche, Alessandro Monfardini, Emmanuel Lévêque, Benoît Chabaud, Bernard Hébral, Étienne Wolf, André Sulpice, Vincent Bouchiat, Alain Girard, Jean-Marc Poncet, Bernard Rousset, Pantxo Diribarne, Davide Durí, Michel Bon-Mardion, Philippe Charvin, Christophe Baudet, Bernard Castaing, Laurent Chevillard, François Daviaud, Bérengère Dubrulle, Yves Gagne, Hichem Benalia, Frédéric Gauthier, Robert Kaiser, Esteban Lesage, Elie Thierry, Geoffroy Aubry, Alain Benoît, Jacques Bossy, Philippe Camus, Olivier Buisson, Eddy Collin, Henri Godfrin, Sylvain Hermelin, Christian Hoffmann, Pierre Hunger, Panayotis Spathis, Ahmad Sultan, Christophe Thirion

Étalonnage dynamique

Sillage proche TSF

